PLS или IPS: что лучше для покупателя, в чём отличия между матрицами и сравнение их преимуществ

PLS или IPS: что лучше для покупателя, в чём отличия между матрицами и сравнение их преимуществ Карманный ПК

Изобретение жк-дисплея с активной матрицей как образец истории изобретателей

В истории электроники не было сюжета прекрасней, чем рассказ об изобретателе (или группе изобретателей), разработавшем что-то великолепное, компания которого отказалась от его проекта из опасений, что оно не соответствует её потребностям.Вот несколько таких историй, ставших известными:

Дэвид Коллинз, новатор в истории штрихкода, многие годы работал в Sylvania над разработкой устройств для железнодорожных вагонов, но в конечном итоге компания отказалась от его идеи, поэтому он решил двигаться самостоятельно и добился огромного успеха.

Xerox Alto, один из первых примеров графического интерфейса пользователя, игнорировался компанией Xerox до начала 1980-х, когда один из посетителей Xerox PARC, руководитель Apple Стив Джобс, не позаимствовал его базовые концепции для Apple Lisa и Macintosh.

Kodak самостоятельно разработала множество базовых концепций цифровой камеры, но изобретателю Стиву Сассону сначала сказали отказаться от его идеи, и только потом Kodak с запозданием начала использовать устройство, изобретённое сотрудником компании.

Наша история будет похожей, только речь в ней идёт о том самом экране, на который, скорее всего, вы сейчас смотрите, особенно если он изготовлен по технологии ЖК-дисплеев.

В 1970-х годах пара инженеров Westinghouse, Питер Броди и Фан Чэнь Ло, разработали первый ЖК-экран на активной матрице. Родившийся в Венгрии Броди заинтересовался новой экспериментальной технологией тонкоплёночных транзисторов, считавшейся потенциальным способом визуального отображения содержимого в более компактном, нежели ЭЛТ, виде.

В заявке на патент изобретатели подчеркнули, что технология реализуема, но требует другого технического базиса вместо кремния, который обычно используется в транзисторах.

«Уже очевидно, что твёрдотельные плоскопанельные дисплеи концептуально реализуемы», — утверждалось в заявке на патент. «Попытки использования для этого кремниевой технологии ограничены размером кремниевых пластин, что не позволяет создавать дисплеи большой площади».

Ничего особенного, просто несколько пикселей под микроскопом.

Поэтому вместо кремния авторы использовали тонкоплёночные транзисторы на стеклянной подложке, что позволило устройству быть прочным, но более тонким, и в то же время пропускать свет. Тонкая плёнка крепилась на слое изолятора с электродом, пропускающим напряжение по экрану.

Сегодня увидеть отдельные транзисторы на экране довольно сложно без, допустим, микроскопа, но в 1970-х это было очень легко, поэтому когда журнал «Time» писал об этом изобретении в 1974 году, то описал его как «похожий на бумагу-миллиметровку паттерн, имеющий 14400 точек пересечения».

Питер Броди, сыгравший важную роль в развитии ЖК-панелей на активной матрице
Питер Броди, сыгравший важную роль в развитии ЖК-панелей на активной матрице

Хотя разработчики признавали, что устройство было довольно грубым, а «разрешение позволяло отображать только силуэты букв, чисел и простых изображений», оно продемонстрировало потенциал плоских экранов, которые однажды заменят громоздкие ЭЛТ-дисплеи.

Как указано в заявке на патент, это был не единственный тип тонкого экрана — например, существовала плазменная технология, получившая популярность в телевизорах в начале 2000-х; на её основе были созданы терминалы компьютерной системы PLATO, известные своим оранжевым оттенком изображения.

Но это стало только отправной точкой технологии, которая осталась с нами. К середине 1990-х цветные дисплеи с активной матрицей стали привычными для ноутбуков благодаря сочетанию ярких цветов и малой толщины. Однако несмотря на то, что концепция была придумана в отделе исследований и разработок американской компании и совершенствовалась другими компаниями, почти все панели даже на самом рассвете их популярности производились японскими изготовителями.

В чём же заключалась проблема? Разработанная Броди и Ло технология так и не получила развития в Westinghouse; частично это было вызвано тем, что компания постепенно уходила с рынка телевизоров, потому что столкнулась на нём со сложностями. Как писал в 1991 году MIT Technology Review, из-за быстрого развития ноутбуков с цветным экраном на компьютерном рынке Westinghouse в начале 1970-х прекратила продавать телевизоры и закрыла исследовательский отдел компании, позволивший Броди и его команде разработать устройство.

Про мини ПК:  Лучшие смартфоны с диагональю экрана до 5,5 дюйма

На самом деле, эксперименты Westinghouse с плоскопанельными ЖК-дисплеями завершились в 1970-х; то же самое произошло и с другими крупными американскими , — писали Ричард Флорида и Дэвид Броуди.

Наблюдатели из Westinghouse, дававшие интервью Time, сказали, что технология была отличной, но разработчики часто пропускали дедлайны; Уильям Коутс, работавший в отделе потребительской электроники, сообщил, что в результате это оттолкнуло компанию от использования инновационной технологии.

«Мы постоянно не укладывались в графики и в бюджеты», — говорит он.

Из этого можно извлечь такой урок: если кто-то не справляется с управлением, но у него есть хорошая идея, то найдите ему менеджера получше.

Перспективные технологии

Micro-LED или ILED. Эта технология является логичной альтернативой органическим светодиодам: в её основе лежат неорганические (Inorganic, I) из нитрида галлия, очень маленького размера. По оценке специалистов, micro-LED смогут посоперничать с привычными OLED по всем ключевым параметрам: более высокая контрастность, лучший запас яркости, меньшее время отклика, долговечность, меньший размер и вдвое меньшее энергопотребление.

Впрочем, это не помешало Sony показать на выставке CES-2022 55-дюймовый телевизор с матрицей из неорганических светодиодов. Apple же в 2022 году купила компанию LuxVue, специализирующуюся на исследованиях в данной области. И хотя в iPhone X используется классический AMOLED, в будущих моделях уже могут быть установлены матрицы с micro-LED, которые, как нас уверяют, позволят увеличить плотность пикселей до 1500 ppi.

Типы экранов смартфонов: конец неразберихеПрототип телевизора Sony с матрицей из micro-LED под названием Crystal LED

Quantum Dots, или QD-LED, или QLED. Эта перспективная технология взяла всего понемногу от уже существующих на рынке. От ЖК-дисплеев ей досталась внутренняя подсветка, вот только «бьёт» она не в жидкие кристаллы, а в очень маленькие кристаллы с эффектом свечения, напылённые прямо на экран — квантовые частицы.

От размера каждой точки зависит, каким цветом она будет светить, диапазон составляет от двух до шести нанометров (для сравнения: толщина человеческого волоса — 100000 нанометров). В результате получаются яркие, насыщенные и в то же время натуральные цвета.

Телевизоры с таким дисплеями впервые выпустила компания Sony в 2022 году. Сейчас на рынке есть несколько моделей от Samsung. Квантовые точки в них используются в слое подсветки. Пока это очень дорогая в производстве технология: средняя стоимость QLED-телевизоров составляет примерно $2500-3000. В мобильной электронике подобные дисплеи не используются, а будут ли и когда — неизвестно.

Типы экранов смартфонов: конец неразберихеКвантовые точки производятся в виде микроскопического порошка и затем напыляются на экран

Рисунок субпикселей

На восприятие изображения на экране может влиять не только технология матрицы, но и рисунок субпикселей. Впрочем, с LCD всё довольно просто: в них каждый RGB-пиксель состоит из трёх вытянутых субпикселей, которые, в зависимости от модификации технологии, могут иметь форму прямоугольника или «галочки».

В AMOLED-экранах всё интереснее. Поскольку в таких матрицах источниками света являются сами субпиксели, а человеческий глаз более чувствителен к чистому зелёному свету, чем к чистому красному или синему, использование в AMOLED того же рисунка, что и в IPS, ухудшило бы цветопередачу и сделало картинку нереалистичной.

Попыткой решить эту проблему стала первая версия технологии PenTile, в которой использовались пиксели двух типов: RG (красный-зелёный) и BG (синий-зелёный), состоящие из двух субпикселей соответствующих цветов. Причём, если красные и синие субпиксели имели форму, близкую к квадратам, то зелёные больше напоминали сильно вытянутые прямоугольники.

Про мини ПК:  Рейтинг бюджетных смартфонов Xiaomi в 2022 году

Недостатками такого рисунка были «грязный» белый цвет, зазубренные края на стыке разных цветов, а при низком ppi — четко видимая сетка подложки субпикселей, появляющаяся из-за слишком большого расстояния между ними. К тому же, разрешение, указываемое в характеристиках таких устройств, было «нечестным»:

если IPS HD матрица имеет 2764800 субпикселей, то AMOLED HD матрица — всего 1843200, что приводило к видимой невооружённым глазом разнице в чёткости IPS- и AMOLED-матриц с, казалось бы, одинаковой плотностью пикселей. Последним флагманским смартфоном с такой AMOLED матрицей стал Samsung Galaxy S III.

В смартпэде Galaxy Note II южнокорейская компания сделала попытку отказа от PenTile: экран устройства имел полноценные RBG-пиксели, хотя и с необычным расположением субпикселей. Тем не менее, по неясным причинам, в дальнейшем Samsung от такого рисунка отказалась — возможно, производитель столкнулся с проблемой дальнейшего увеличения ppi.

В своих современных экранах Samsung вернулась к RG-BG пикселям с использованием нового типа рисунка, который был назван Diamond PenTile. Новая технология позволила сделать белый цвет более натуральным, а что касается зазубренных краёв (например, вокруг белого объекта на чёрном фоне были чётко видны отдельные красные субпиксели), то эта проблема была решена ещё проще — увеличением ppi до такой степени, что неровности перестали быть заметны. Diamond PenTile используется во всех флагманах Samsung начиная с модели Galaxy S4.

В завершении этого раздела стоит сказать ещё об одном рисунке AMOLED-матриц — PenTile RGBW, который получается добавлением к трём основным субпикселям четвёртого, белого. До появления Diamond PenTile такой рисунок был единственным рецептом чистого белого цвета, но он так и не получил широкого распространения — одним из последних мобильных гаджетов с PenTile RGBW стал планшет Galaxy Note 10.1 2022.

Сейчас AMOLED-матрицы с RGBW-пикселями применяются в телевизорах, поскольку в них не требуется высокий показатель ppi. Справедливости ради, также упомянем, что RGBW-пиксели могут использоваться и в LCD, но примеры использования таких матриц в смартфонах нам не известны.

В отличие от AMOLED, качественные IPS-матрицы никогда не испытывали проблем в качестве, связанных с рисунком субпикселей. Тем не менее, технология Diamond PenTile, вместе с высокой плотностью пикселей, позволила AMOLED догнать и обогнать IPS. Поэтому, если вы выбираете гаджеты придирчиво, не стоит покупать смартфон с экраном AMOLED, у которого плотность пикселей менее 300 ppi. При более высокой плотности никакие дефекты заметны не будут.

Типы матриц

В современных смартфонах главным образом применяются три технологии производства матриц: две основаны на жидких кристаллах — TN film и IPS, а третья — AMOLED — на органических светодиодах. Но прежде чем начать, стоит рассказать об аббревиатуре TFT, являющейся источником множества заблуждений.

TFT (thin-film transistor) — это тонкоплёночные транзисторы, которые используются для управления работой каждого субпикселя современных экранов. Технология TFT применяется во всех перечисленных выше типах экранов, включая AMOLED, поэтому, если где-то говорится о сравнении TFT и IPS, то это в корне неверная постановка вопроса.

В большинстве TFT-матриц используется аморфный кремний, но недавно в производство стали внедряться TFT на поликристаллическом кремнии (LTPS-TFT). Главные преимущества новой технологии — уменьшение энергопотребления и размеров транзисторов, что позволяет достигать высоких значений плотности пикселей (более 500 ppi). Одним из первых смартфонов с IPS-дисплеем и матрицей LTPS-TFT стал OnePlus One.

Про мини ПК:  Обзор Apple iPhone 13: главный iPhone года — Wylsacom

Теперь, когда мы разобрались с TFT, перейдём непосредственно к типам матриц. Несмотря на большое разнообразие разновидностей LCD, все они имеют один и тот же базовый принцип работы: приложенный к молекулам жидких кристаллов ток задаёт угол поляризации света (он влияет на яркость субпикселя).

Поляризованный свет затем проходит через светофильтр и окрашивается в цвет соответствующего субпикселя. Первыми в смартфонах появились наиболее простые и дешёвые матрицы TN film, название которых часто сокращается до TN. Они имеют малые углы обзора (не более 60 градусов при отклонении от вертикали), причём даже при небольших наклонах изображение на экранах с такими матрицами инвертируется.

Наиболее распространённой в мобильных гаджетах сейчас является технология IPS, иногда обозначаемая как SFT. IPS-матрицы появились 20 лет назад и с тех пор выпускались в различных модификациях, число которых приближается к двум десяткам. Тем не менее, выделить среди них стоит те, которые являются наиболее технологичными и активно используются на данный момент:

AH-IPS от компании LG и PLS — от компании Samsung, которые весьма близки по своим свойствам, что даже являлось поводом для судебного разбирательства между производителями. Современные модификации IPS имеют широкие углы обзора, которые близки к 180 градусам, реалистичную цветопередачу и обеспечивают возможность создания дисплеев с высокой плотностью пикселей.

К сожалению, производители гаджетов практически никогда не сообщают точный тип IPS-матриц, хотя при использовании смартфона различия будут видны невооружённым глазом. Для более дешёвых IPS-матриц характерно выцветание картинки при наклонах экрана, а также невысокая точность цветопередачи: изображение может быть либо слишком «кислотным», либо, напротив, «блёклым».

Что касается энергопотребления, то в жидкокристаллических дисплеях оно по большей части определяется мощностью элементов подсветки (в смартфонах для этих целей используются светодиоды), поэтому потребление матриц TN film и IPS можно считать примерно одинаковым при совпадающем уровне яркости.

На LCD совершенно не похожи матрицы, созданные на основе органических светодиодов (OLED). В них источником света служат сами субпиксели, представляющие собой сверхминиатюрные органические светодиоды. Так как нет необходимости во внешней подсветке, такие экраны можно сделать тоньше жидкокристаллических.

В смартфонах применяется разновидность технологии OLED — AMOLED, которая использует активную TFT-матрицу для управления субпикселями. Именно TFT-матрицы являются самым распространённым способом создания цветных OLED-дисплеев, поскольку они позволяют управлять каждым субпикселем в отдельности.

AMOLED-матрицы обеспечивают самый глубокий чёрный цвет, поскольку для его «отображения» требуется лишь полностью отключить светодиоды. По сравнению с LCD, такие матрицы обладают более низким энергопотреблением, особенно при использовании тёмных тем оформления, в которых чёрные участки экрана вовсе не потребляют энергию.

Другая характерная особенность AMOLED — слишком насыщенные цвета. На заре своего появления такие матрицы действительно имели неправдоподобную цветопередачу, и, хотя подобные «детские болячки» давно в прошлом, до сих пор большинство смартфонов с такими экранами имеют встроенную настройку насыщенности, которая позволяет приблизить изображение на AMOLED по восприятию к IPS-экранам.

Другим ограничением AMOLED экранов раньше являлся неодинаковый срок службы светодиодов различных цветов. Через пару лет использования смартфона это могло привести к выгоранию субпикселей и остаточному изображению некоторых элементов интерфейса, в первую очередь — на панели уведомлений.

Подведём краткий итог. Наиболее качественное и яркое изображение на данный момент обеспечивают AMOLED-матрицы: даже Apple, по слухам, в одном из следующих iPhone будет использовать такие дисплеи. Но, стоит учитывать, что все новейшие разработки компания Samsung, как основной производитель таких панелей, оставляет себе, а другим производителям продаёт «прошлогодние» матрицы.

Оцените статью
Карман PC
Добавить комментарий